(…)
“Em conclusão, a infecção por coronavírus é um sério problema de saúde à espera de uma vacina eficaz e / ou tratamento antiviral. A principal complicação da pneumonite por SARS-Covid-19 é a SDRA mediada por uma variedade de mecanismos que podem ser agravados pela deficiência de vitamina D e diminuídos pela ativação do receptor de vitamina D. Vários ensaios clínicos randomizados usando vitamina D oral ou calcifediol oral (25OHD) estão em andamento e devem fornecer orientações dentro de alguns meses.” (…)
LEIA EM:
[1] E.M. Bloch, S. Shoham, A. Casadevall, B.S. Sachais, B. Shaz, J.L. Winters, C. van Buskirk, B.J. Grossman, M. Joyner, J.P. Henderson, A. Pekosz, B. Lau, A. Wesolowski, L. Katz, H. Shan, P.G. Auwaerter, D. Thomas, D.J. Sullivan, N. Paneth, E. Gehrie, S. Spitalnik, E. Hod, L. Pollack, W.T. Nicholson, L. Pirofski, J.A. Bailey, A.A.R. Tobian Deployment of convalescent plasma for the prevention and treatment of COVID-19 J. Clin. Invest. (2020), 10.1172/jci138745Google Scholar
[2]J.H. Beigel, K.M. Tomashek, L.E. Dodd, A.K. Mehta, B.S. Zingman, A.C. Kalil, E. Hohmann, H.Y. Chu, A. Luetkemeyer, S. Kline, D. Lopez de Castilla, R.W. Finberg, K. Dierberg, V. Tapson, L. Hsieh, T.F. Patterson, R. Paredes, D.A. Sweeney, W.R. Short, G. Touloumi, D.C. Lye, N. Ohmagari, M. Oh, G.M. Ruiz-Palacios, T. Benfield, G. Fätkenheuer, M.G. Kortepeter, R.L. Atmar, C.B. Creech, J. Lundgren, A.G. Babiker, S. Pett, J.D. Neaton, T.H. Burgess, T. Bonnett, M. Green, M. Makowski, A. Osinusi, S. Nayak, H.C. Lane Remdesivir for the treatment of Covid-19 — preliminary report N. Engl. J. Med. (2020), 10.1056/NEJMoa2007764NEJMoa2007764Google Scholar
[3]R. Bouillon, C. Marcocci, G. Carmeliet, D. Bikle, J.H. White, B. Dawson-Hughes, P. Lips, C.F. Munns, M. Lazaretti-Castro, A. Giustina, J. Bilezikian Skeletal and extraskeletal actions of vitamin d: current evidence and outstanding questions Endocr. Rev., 40 (2019), pp. 1109-1151, 10.1210/er.2018-00126CrossRefView Record in ScopusGoogle Scholar
[4]P.-J. Martens, C. Gysemans, A. Verstuyf, C. Mathieu Vitamin d’s effect on immune function Nutrients., 12 (2020), p. 1248, 10.3390/nu12051248CrossRefGoogle Scholar
[5]D.D. Bikle, S. Patzek, Y. Wang Physiologic and pathophysiologic roles of extra renal CYP27b1: case report and review Bone Rep., 8 (2018), pp. 255-267, 10.1016/j.bonr.2018.02.004ArticleDownload PDFView Record in ScopusGoogle Scholar
[6]A.R. Martineau, D.A. Jolliffe, R.L. Hooper, L. Greenberg, J.F. Aloia, P. Bergman, G. DubnovRaz, S. Esposito, D. Ganmaa, A.A. Ginde, E.C. Goodall, C.C. Grant, C.J. Griffiths, W. Janssens, I. Laaksi, S. Manaseki Holland, D. Mauger, D.R. Murdoch, R. Neale, J.R. Rees, S. Simpson, I. Stelmach, G.T. Kumar, M. Urashima, C.A. Camargo Vitamin D supplementation to prevent acute respiratory tract infections: Systematic review and meta-analysis of individual participant data BMJ, 356 (2017), 10.1136/bmj.i6583Google Scholar
[7]S. Hansdottir, M.M. Monick, S.L. Hinde, N. Lovan, D.C. Look, G.W. Hunninghake Respiratory epithelial cells convert inactive vitamin d to its active form: potential effects on host defense J. Immunol., 181 (2008), pp. 7090-7099, 10.4049/jimmunol.181.10.7090CrossRefView Record in ScopusGoogle Scholar
[8]Z. Xu, L. Shi, Y. Wang, J. Zhang, L. Huang, C. Zhang, S. Liu, P. Zhao, H. Liu, L. Zhu, Y. Tai, C. Bai, T. Gao, J. Song, P. Xia, J. Dong, J. Zhao, F.S. Wang Pathological findings of COVID-19 associated with acute respiratory distress syndrome Lancet Respir. Med., 8 (2020), pp. 420-422, 10.1016/S2213-2600(20)30076-XArticleDownload PDFView Record in ScopusGoogle Scholar
[9]C. Huang, Y. Wang, X. Li, L. Ren, J. Zhao, Y. Hu, L. Zhang, G. Fan, J. Xu, X. Gu, Z. Cheng, T. Yu, J. Xia, Y. Wei, W. Wu, X. Xie, W. Yin, H. Li, M. Liu, Y. Xiao, H. Gao, L. Guo, J. Xie, G. Wang, R. Jiang, Z. Gao, Q. Jin, J. Wang, B. Cao Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China Lancet, 395 (2020), pp. 497-506, 10.1016/S0140-6736(20)30183-5ArticleDownload PDFView Record in ScopusGoogle Scholar
[10]N. Chen, M. Zhou, X. Dong, J. Qu, F. Gong, Y. Han, Y. Qiu, J. Wang, Y. Liu, Y. Wei, J. Xia, T. Yu, X. Zhang, L. Zhang Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study Lancet, 395 (2020), pp. 507-513, 10.1016/S0140-6736(20)30211-7ArticleDownload PDFView Record in ScopusGoogle Scholar
[11]G. Bellani, J.G. Laffey, T. Pham, E. Fan, L. Brochard, A. Esteban, L. Gattinoni, F.M.P. Van Haren, A. Larsson, D.F. McAuley, M. Ranieri, G. Rubenfeld, B.T. Thompson, H. Wrigge, A.S. Slutsky, A. Pesenti Epidemiology, patterns of care, and mortality for patients with acute respiratory distress syndrome in intensive care units in 50 countries JAMA J. Am. Med. Assoc., 315 (2016), pp. 788-800, 10.1001/jama.2016.0291CrossRefView Record in ScopusGoogle Scholar
[12]C. Huang, Y. Wang, X. Li, L. Ren, J. Zhao, Y. Hu, L. Zhang, G. Fan, J. Xu, X. Gu, Z. Cheng, T. Yu, J. Xia, Y. Wei, W. Wu, X. Xie, W. Yin, H. Li, M. Liu, Y. Xiao, H. Gao, L. Guo, J. Xie, G. Wang, R. Jiang, Z. Gao, Q. Jin, J. Wang, B. Cao Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China Lancet, 395 (2020), pp. 497-506, 10.1016/S0140-6736(20)30183-5ArticleDownload PDFView Record in ScopusGoogle Scholar
[13]N. Zhu, D. Zhang, W. Wang, X. Li, B. Yang, J. Song, X. Zhao, B. Huang, W. Shi, R. Lu, P. Niu, F. Zhan, X. Ma, D. Wang, W. Xu, G. Wu, G.F. Gao, W. Tan A novel coronavirus from patients with pneumonia in China, 2019 N. Engl. J. Med., 382 (2020), pp. 727-733, 10.1056/NEJMoa2001017CrossRefView Record in ScopusGoogle Scholar
[14]E. Fan, D. Brodie, A.S. SlutskyAcute respiratory distress syndromeJAMA, 319 (2018), p. 698, 10.1001/jama.2017.21907View Record in ScopusGoogle Scholar
[15]T.J. Standiford, P.A. Ward Therapeutic targeting of acute lung injury and acute respiratory distress syndrome Transl. Res., 167 (2016), pp. 183-191, 10.1016/j.trsl.2015.04.015ArticleDownload PDFView Record in ScopusGoogle Scholar
[16]R. Channappanavar, S. Perlman Pathogenic human coronavirus infections: causes and consequences of cytokine storm and immunopathology Semin. Immunopathol., 39 (2017), pp. 529-539, 10.1007/s00281-017-0629-xCrossRefView Record in ScopusGoogle Scholar
[17]M.J. Cameron, J.F. Bermejo-Martin, A. Danesh, M.P. Muller, D.J. Kelvin Human immunopathogenesis of severe acute respiratory syndrome (SARS) Virus Res., 133 (2008), pp. 13-19, 10.1016/j.virusres.2007.02.014ArticleDownload PDFView Record in ScopusGoogle Scholar
[18]C.-K. Min, S. Cheon, N.-Y. Ha, K.M. Sohn, Y. Kim, A. Aigerim, H.M. Shin, J.-Y. Choi, K.-S. Inn, J.-H. Kim, J.Y. Moon, M.-S. Choi, N.-H. Cho, Y.-S. Kim Comparative and kinetic analysis of viral shedding and immunological responses in MERS patients representing a broad spectrum of disease severity Sci. Rep., 6 (2016), p. 25359, 10.1038/srep25359Google Scholar
[19]A.E. Williams, R.C. Chambers The mercurial nature of neutrophils: still an enigma in ARDS? Am. J. Physiol. Lung Cell Mol. Physiol., 306 (2014), pp. L217-L230, 10.1152/ajplung.00311.2013CrossRefView Record in ScopusGoogle Scholar
[20]A.E. Williams, R.J. José, P.F. Mercer, D. Brealey, D. Parekh, D.R. Thickett, C. O’Kane, D.F. McAuley, R.C. Chambers Evidence for chemokine synergy during neutrophil migration in ARDS Thorax, 72 (2017), pp. 66-73, 10.1136/thoraxjnl-2016-208597CrossRefView Record in ScopusGoogle Scholar
[21]A. Ichikawa, K. Kuba, M. Morita, S. Chida, H. Tezuka, H. Hara, T. Sasaki, T. Ohteki, V.M. Ranieri, C.C. Dos Santos, Y. Kawaoka, S. Akira, A.D. Luster, B. Lu, J.M. Penninger, S. Uhlig, A.S. Slutsky, Y. Imai CXCL10-CXCR3 enhances the development of neutrophil-mediated fulminant lung injury of viral and nonviral origin Am. J. Respir. Crit. Care Med., 187 (2013), pp. 65-77, 10.1164/rccm.201203-0508OCView Record in ScopusGoogle Scholar
[22]Y. Imai, K. Kuba, S. Rao, Y. Huan, F. Guo, B. Guan, P. Yang, R. Sarao, T. Wada, H. Leong-Poi, M.A. Crackower, A. Fukamizu, C.C. Hui, L. Hein, S. Uhlig, A.S. Slutsky, C. Jiang, J.M. Penninger Angiotensin-converting enzyme 2 protects from severe acute lung failure Nature, 436 (2005), pp. 112-116, 10.1038/nature03712CrossRefView Record in ScopusGoogle Scholar
[23]B. Treml, N. Neu, A. Kleinsasser, C. Gritsch, T. Finsterwalder, R. Geiger, M. Schuster, E. Janzek, H. Loibner, J. Penninger, A. Loeckinger Recombinant angiotensin-converting enzyme 2 improves pulmonary blood flow and oxygenation in lipopolysaccharide-induced lung injury in piglets Crit. Care Med., 38 (2010), pp. 596-601, 10.1097/CCM.0b013e3181c03009View Record in ScopusGoogle Scholar
[24]M. Wenz, B. Hoffmann, J. Bohlender, G. Kaczmarczyk Angiotensin II formation and endothelin clearance in ARDS patients in supine and prone positions Intensive Care Med., 26 (2000), pp. 292-298, 10.1007/s001340051152View Record in ScopusGoogle Scholar
[25]J. Kim, S.M. Choi, J. Lee, Y.S. Park, C.H. Lee, J.-J. Yim, C.-G. Yoo, Y.W. Kim, S.K. Han, S.-M. Lee Effect of Renin-Angiotensin System Blockage in Patients with Acute Respiratory Distress Syndrome: A Retrospective Case Control Study Korean J. Crit. Care Med., 32 (2017), pp. 154-163, 10.4266/kjccm.2016.00976CrossRefView Record in ScopusGoogle Scholar
[26]K. Kuba, Y. Imai, S. Rao, C. Jiang, J.M. Penninger Lessons from SARS: control of acute lung failure by the SARS receptor ACE2 J. Mol. Med., 84 (2006), pp. 814-820, 10.1007/s00109-006-0094-9CrossRefView Record in ScopusGoogle Scholar
[27]P. Zhou, X. Lou Yang, X.G. Wang, B. Hu, L. Zhang, W. Zhang, H.R. Si, Y. Zhu, B. Li, C.L. Huang, H.D. Chen, J. Chen, Y. Luo, H. Guo, R. Di Jiang, M.Q. Liu, Y. Chen, X.R. Shen, X. Wang, X.S. Zheng, K. Zhao, Q.J. Chen, F. Deng, L.L. Liu, B. Yan, F.X. Zhan, Y.Y. Wang, G.F. Xiao, Z.L. Sh i A pneumonia outbreak associated with a new coronavirus of probable bat origin Nature, 579 (2020), pp. 270-273, 10.1038/s41586-020-2012-7CrossRefView Record in ScopusGoogle Scholar
[28]Y. Zhao, Z. Zhao, Y. Wang, Y. Zhou, Y. Ma, W. Zuo Single-cell RNA expression profiling of ACE2, the putative receptor of Wuhan 2019-nCov BioRxiv (2020), 10.1101/2020.01.26.9199852020.01.26.919985Google Scholar
[29]N.J. Dagenais, F. Jamali Protective effects of angiotensin II interruption: evidence for antiinflammatory actions Pharmacotherapy, 25 (2005), pp. 1213-1229, 10.1592/phco.2005.25.9.1213CrossRefView Record in ScopusGoogle Scholar
[30]V.B. Patel, R. Basu, G.Y. Oudit ACE2/Ang 1-7 axis: a critical regulator of epicardial adipose tissue inflammation and cardiac dysfunction in obesity Adipocyte, 5 (2016), pp. 306-311, 10.1080/21623945.2015.1131881CrossRefView Record in ScopusGoogle Scholar
[31]M.M. Gouda, S.B. Shaikh, Y.P. Bhandary Inflammatory and fibrinolytic system in acute respiratory distress syndrome Lung, 196 (2018), pp. 609-616, 10.1007/s00408-018-0150-6CrossRefView Record in ScopusGoogle Scholar
[32]Z. Varga, A.J. Flammer, P. Steiger, M. Haberecker, R. Andermatt, A.S. Zinkernagel, M.R. Mehra, R.A. Schuepbach, F. Ruschitzka, H. Moch Correspondence Endothelial cell infection and endotheliitis in Lancet, 6736 (2020), pp. 19-20, 10.1016/S0140-6736(20)30937-5Google Scholar
[33]D. Giannis, I.A. Ziogas, P. Gianni Coagulation disorders in coronavirus infected patients: COVID-19, SARS-CoV-1, MERS-CoV and lessons from the past J. Clin. Virol., 127 (2020), 10.1016/j.jcv.2020.104362Google Scholar
[34]B. Bikdeli, M.V. Madhavan, D. Jimenez, T. Chuich, I. Dreyfus, E. Driggin, C. Der Nigoghossian, W. Ageno, M. Madjid, Y. Guo, L.V. Tang, Y. Hu, J. Giri, M. Cushman, I. Quéré, E.P. Dimakakos, C.M. Gibson, G. Lippi, E.J. Favaloro, J. Fareed, J.A. Caprini, A.J. Tafur, J.R. Burton, D.P. Francese, E.Y. Wang, A. Falanga, C. McLintock, B.J. Hunt, A.C. Spyropoulos, G.D. Barnes, J.W. Eikelboom, I. Weinberg, S. Schulman, M. Carrier, G. Piazza, J.A. Beckman, P.G. Steg, G.W. Stone, S. Rosenkranz, S.Z. Goldhaber, S.A. Parikh, M. Monreal, H.M. Krumholz, S.V. Konstantinides, J.I. Weitz, G.Y.H. Lip COVID-19 and thrombotic or thromboembolic disease: implications for prevention, antithrombotic therapy, and follow-up J. Am. Coll. Cardiol. (2020), 10.1016/j.jacc.2020.04.031Google Scholar
[35]J. Wang, L. Chen, B. Chen, A. Meliton, S.Q. Liu, Y. Shi, T. Liu, D.K. Deb, J. Solway, Y. Chun Li Chronic Activation of the renin-angiotensin system induces lung fibrosis Sci. Rep., 5 (2015), 10.1038/srep15561Google Scholar
[36]Z. Ye, Y. Zhang, Y. Wang, Z. Huang, B. Song Chest CT manifestations of new coronavirus disease 2019 (COVID-19): a pictorial review Eur. Radiol. (2020), pp. 1-9, 10.1007/s00330-020-06801-0CrossRefView Record in ScopusGoogle Scholar
[37]J. Xu, J. Yang, J. Chen, Q. Luo, Q. Zhang, H. Zhang Vitamin D alleviates lipopolysaccharide-induced acute lung injury via regulation of the renin-angiotensin system Mol. Med. Rep., 16 (2017), pp. 7432-7438, 10.3892/mmr.2017.7546CrossRefView Record in ScopusGoogle Scholar
[38]Y.Y. Shi, T.J. Liu, J.H. Fu, W. Xu, L.L. Wu, A.N. Hou, X.D. Xue Vitamin D/VDR signaling attenuates lipopolysaccharide-induced acute lung injury by maintaining the integrity of the pulmonary epithelial barrierMol. Med. Rep., 13 (2016), pp. 1186-1194, 10.3892/mmr.2015.4685CrossRefView Record in ScopusGoogle Scholar
[39]J. Kong, X. Zhu, Y. Shi, T. Liu, Y. Chen, I. Bhan, Q. Zhao, R. Thadhani, Y. Chun Li VDR attenuates acute lung injury by blocking Ang-2-Tie-2 pathway and renin-angiotensin system Mol. Endocrinol., 27 (2013), pp. 2116-2125, 10.1210/me.2013-1146CrossRefView Record in ScopusGoogle Scholar
[40]S. Zheng, J. Yang, X. Hu, M. Li, Q. Wang, R.C.A. Dancer, D. Parekh, F. Gao-Smith, D.R. Thickett, S. Jin Vitamin D attenuates lung injury via stimulating epithelial repair, reducing epithelial cell apoptosis and inhibits TGF-β induced epithelial to mesenchymal transition Biochem. Pharmacol. (2020), p. 113955, 10.1016/j.bcp.2020.113955ArticleDownload PDFGoogle Scholar
[41]M. Ishii, Y. Yamaguchi, K. Isumi, S. Ogawa, M. Akishita Transgenic Mice Overexpressing Vitamin D Receptor (VDR) Show Anti-Inflammatory Effects in Lung Tissues Inflammation, 40 (2017), pp. 2012-2019, 10.1007/s10753-017-0641-2CrossRefView Record in ScopusGoogle Scholar
[42]A. Rafique, L. Rejnmark, L. Heickendorff, H.J. Møller 25(OH)D 3 and 1.25(OH) 2 D 3 inhibits TNF-α expression in human monocyte derived macrophages PLoS One, 14 (2019), 10.1371/journal.pone.0215383Google Scholar
[43]O. Andrukhov, O. Andrukhova, U. Hulan, Y. Tang, H.P. Bantleon, X. Rausch-Fan Both 25-hydroxyvitamin-D3 and 1,25-dihydroxyvitamin- D3 reduces inflammatory response in human periodontal ligament cells PLoS One, 9 (2014), p. e90301, 10.1371/journal.pone.0090301CrossRefGoogle Scholar
[44]H.A. Bischoff-Ferrari Optimal serum 25-hydroxyvitamin D levels for multiple health outcomes Adv. Exp. Med. Biol., 810 (2014), pp. 500-525, 10.1007/978-1-4939-0437-2_28CrossRefView Record in ScopusGoogle Scholar
[45]P. Selvaraj, M. Harishankar, B. Singh, V.V. Banurekha, M.S. Jawahar Effect of vitamin D 3 on chemokine expression in pulmonary tuberculosis Cytokine, 60 (2012), pp. 212-219, 10.1016/j.cyto.2012.06.238ArticleDownload PDFView Record in ScopusGoogle Scholar
[46]S. Scolletta, M. Colletti, L. Di Luigi, C. Crescioli Vitamin D receptor agonists target CXCL10: new therapeutic tools for resolution of inflammation Mediators Inflamm., 2013 (2013), Article 876319, 10.1155/2013/876319Google Scholar
[47]J. Kong, Z. Zhang, M.W. Musch, G. Ning, J. Sun, J. Hart, M. Bissonnette, C.L. YanNovel role of the vitamin D receptor in maintaining the integrity of the intestinal mucosal barrierAm. J. Physiol. Gastrointest. Liver Physiol., 294 (2007), 10.1152/ajpgi.00398.2007Google Scholar
[48]Y. Takano, H. Mitsuhashi, K. Ueno 1α,25-Dihydroxyvitamin D 3 inhibits neutrophil recruitment in hamster model of acute lung injury Steroids, 76 (2011), pp. 1305-1309, 10.1016/j.steroids.2011.06.009ArticleDownload PDFView Record in ScopusGoogle Scholar
[49]Y.C. Li, G. Qiao, M. Uskokovic, W. Xiang, W. Zheng, J. Kong Vitamin D: a negative endocrine regulator of the renin-angiotensin system and blood pressure J. Steroid Biochem. Mol. Biol. (2004), pp. 387-392, 10.1016/j.jsbmb.2004.03.004ArticleDownload PDFView Record in ScopusGoogle Scholar
[50]C. Zhou, F. Lu, K. Cao, D. Xu, D. Goltzman, D. Miao Calcium-independent and 1,25(OH)2D3-dependent regulation of the renin-angiotensin system in 1α-hydroxylase knockout mice Kidney Int., 74 (2008), pp. 170-179, 10.1038/ki.2008.101ArticleDownload PDFCrossRefView Record in ScopusGoogle Scholar
[51]L.N. Chen, X.H. Yang, D.H. Nissen, Y.Y. Chen, L.J. Wang, J.H. Wang, J.L. Gao, L.Y. Zhang Dysregulated renin-Angiotensin system contributes to acute lung injury caused by hind-limb ischemia-reperfusion in mice Shock, 40 (2013), pp. 420-429, 10.1097/SHK.0b013e3182a6953eView Record in ScopusGoogle Scholar
[52]D. Liu, Y.X. Fang, X. Wu, W. Tan, W. Zhou, Y. Zhang, Y.Q. Liu, G.Q. Li 1,25-(OH)2D3/Vitamin D receptor alleviates systemic lupus erythematosus by downregulating Skp2 and upregulating p27, Cell Commun Signal., 17 (2019), 10.1186/s12964-019-0488-2Google Scholar
[53]E.S. Yang, K.L. Burnstein Vitamin d inhibits G1 to S progression in LNCaP prostate Cancer cells through p27Kip1 stabilization and Cdk2 mislocalization to the cytoplasm J. Biol. Chem., 278 (2003), pp. 46862-46868, 10.1074/jbc.M306340200View Record in ScopusGoogle Scholar
[54]N.C. Gassen, D. Niemeyer, D. Muth, V.M. Corman, S. Martinelli, A. Gassen, K. Hafner, J. Papies, K. Mösbauer, A. Zellner, A.S. Zannas, A. Herrmann, F. Holsboer, R. Brack-Werner, M. Boshart, B. Müller-Myhsok, C. Drosten, M.A. Müller, T. Rein SKP2 attenuates autophagy through Beclin1-ubiquitination and its inhibition reduces MERS-Coronavirus infection Nat. Commun., 10 (2019), 10.1038/s41467-019-13659-4Google Scholar
[55]Á.F. Fernández, S. Sebti, Y. Wei, Z. Zou, M. Shi, K.L. McMillan, C. He, T. Ting, Y. Liu, W.C. Chiang, D.K. Marciano, G.G. Schiattarella, G. Bhagat, O.W. Moe, M.C. Hu, B. Levine Disruption of the beclin 1-BCL2 autophagy regulatory complex promotes longevity in mice Nature, 558 (2018), pp. 136-140, 10.1038/s41586-018-0162-7CrossRefView Record in ScopusGoogle Scholar
[56]K.G. Andersen, A. Rambaut, W.I. Lipkin, E.C. Holmes, R.F. Garry The proximal origin of SARS-CoV-2 Nat. Med., 26 (2020), pp. 450-452, 10.1038/s41591-020-0820-9CrossRefView Record in ScopusGoogle Scholar
[57]H. Talreja, J. Tan, M. Dawes, S. Supershad, K. Rabindranath, J. Fisher, S. Valappil, V. van der Merwe, L. Wong, W. van der Merwe, J. Paton A consensus statement on the use of angiotensin receptor blockers and angiotensin converting enzyme inhibitors in relation to COVID-19 (corona virus disease 2019) N. Z. Med. J., 133 (2020), pp. 85-87(accessed May 2, 2020) http://www.ncbi.nlm.nih.gov/pubmed/32242182View Record in ScopusGoogle Scholar
[58]J. Guo, Z. Huang, L. Lin, J. Lv Coronavirus disease 2019 (COVID-19) and cardiovascular disease: a viewpoint on the potential influence of angiotensin-converting enzyme Inhibitors/Angiotensin receptor blockers on onset and severity of severe acute respiratory syndrome coronavirus 2 infection J. Am. Heart Assoc., 9 (2020), Article e016219, 10.1161/JAHA.120.016219View Record in ScopusGoogle Scholar
[59]M. Vaduganathan, O. Vardeny, T. Michel, J.J.V. McMurray, M.A. Pfeffer, S.D. Solomon Renin–Angiotensin–Aldosterone system inhibitors in patients with Covid-19 N. Engl. J. Med. (2020), 10.1056/nejmsr2005760Google Scholar
[60]J. Lubel, M. Garg Renin–Angiotensin–Aldosterone system inhibitors in Covid-19 N. Engl. J. Med., 382 (2020), 10.1056/NEJMc2013707NEJMc2013707Google Scholar
[61]V. Brinkmann, U. Reichard, C. Goosmann, B. Fauler, Y. Uhlemann, D.S. Weiss, Y. Weinrauch, A. Zychlinsky Neutrophil extracellular traps kill Bacteria Science (80-.), 303 (2004), pp. 1532-1535, 10.1126/science.1092385View Record in ScopusGoogle Scholar
[62]B.J. Barnes, J.M. Adrover, A. Baxter-Stoltzfus, A. Borczuk, J. Cools-Lartigue, J.M. Crawford, J. Daßler-Plenker, P. Guerci, C. Huynh, J.S. Knight, M. Loda, M.R. Looney, F. McAllister, R. Rayes, S. Renaud, S. Rousseau, S. Salvatore, R.E. Schwartz, J.D. Spicer, C.C. Yost, A. Weber, Y. Zuo, M. Egeblad Targeting potential drivers of COVID-19: neutrophil extracellular traps J. Exp. Med., 217 (2020), 10.1084/jem.20200652Google Scholar
[63]J.M. Agraz-Cibrian, D.M. Giraldo, S. Urcuqui-Inchima 1,25-Dihydroxyvitamin D3 induces formation of neutrophil extracellular trap-like structures and modulates the transcription of genes whose products are neutrophil extracellular trap-associated proteins: a pilot study Steroids, 141 (2019), pp. 14-22, 10.1016/j.steroids.2018.11.001ArticleDownload PDFView Record in ScopusGoogle Scholar
[64]S. Hansdottir, M.M. Monick, N. Lovan, L. Powers, A. Gerke, G.W. Hunninghake Vitamin d decreases respiratory syncytial virus induction of NF-κB–Linked chemokines and cytokines in airway epithelium while maintaining the antiviral state J. Immunol., 184 (2010), pp. 965-974, 10.4049/jimmunol.0902840CrossRefView Record in ScopusGoogle Scholar
[65]H. Chen, R. Lu, Y. guo Zhang, J. Sun Vitamin d receptor deletion leads to the destruction of tight and adherens junctions in lungs Tissue Barriers, 6 (2018), pp. 1-13, 10.1080/21688370.2018.1540904CrossRefView Record in ScopusGoogle Scholar
[66]M. Kose, O. Bastug, M.F. Sonmez, S. Per, A. Ozdemir, E. Kaymak, H. Yahşi, M.A. OzturkProtective effect of vitamin D against hyperoxia-induced lung injury in newborn rats Pediatr. Pulmonol., 52 (2017), pp. 69-76, 10.1002/ppul.23500CrossRefView Record in ScopusGoogle Scholar
[67]S. Margetic Inflammation and hemostasis Biochem. Medica (2012), pp. 49-62, 10.11613/bm.2012.006View Record in ScopusGoogle Scholar
[68]M. Ohsawa, T. Koyama, K. Yamamoto, S. Hirosawa, S. Kamei, R. Kamiyama 1α,25-Dihydroxyvitamin D3 and its potent synthetic analogs downregulate tissue factor and upregulate thrombomodulin expression in monocytic cells, counteracting the effects of tumor necrosis factor and oxidized LDL Circulation, 102 (2000), pp. 2867-2872, 10.1161/01.CIR.102.23.2867View Record in ScopusGoogle Scholar
[69]K.I. Aihara, H. Azuma, M. Akaike, Y. Ikeda, M. Yamashita, T. Sudo, H. Hayashi, Y. Yamada, F. Endoh, M. Fujimura, T. Yoshida, H. Yamaguchi, S. Hashizume, M. Kato, K. Yoshimura, Y. Yamamoto, S. Kato, T. Matsumoto Disruption of nuclear vitamin D receptor gene causes enhanced thrombogenicity in mice J. Biol. Chem., 279 (2004), pp. 35798-35802, 10.1074/jbc.M404865200View Record in ScopusGoogle Scholar
[70]J.M. Martinez-Moreno, C. Herencia, A.M. De Oca, J.R. Muñoz-Castañeda, M.E. Rodríguez-Ortiz, J.M. Diáz-Tocados, E. Peralbo-Santaella, A. Camargo, A. Canalejo, M. Rodriguez, F. Velasco-Gimena, Y. Almaden Vitamin D modulates tissue factor and protease-activated receptor 2 expression in vascular smooth muscle cells FASEB J., 30 (2016), pp. 1367-1376, 10.1096/fj.15-272872CrossRefView Record in ScopusGoogle Scholar
[71]W.X. Wu, D.R. He Low vitamin d levels are associated with the development of deep venous thromboembolic events in patients with ischemic stroke Clin. Appl. Thromb. Hemost., 24 (2018), pp. 69S-75S, 10.1177/1076029618786574CrossRefGoogle Scholar
[72]O. Topaloglu, M.S. Arslan, M. Karakose, B. Ucan, Z. Ginis, E. Cakir, E.T. Akkaymak, M. Sahin, M. Ozbek, E. Cakal, T. Delibasi Is There Any Association Between Thrombosis and Tissue Factor Pathway Inhibitor Levels in Patients With Vitamin D Deficiency? Clin. Appl. Thromb. Hemost., 21 (2015), pp. 428-433, 10.1177/1076029613509477CrossRefView Record in ScopusGoogle Scholar
[73]M.F. Holick Medical progress: vitamin d deficiencyN. Engl. J. Med., 357 (2007), pp. 266-281, 10.1056/NEJMra070553CrossRefView Record in ScopusGoogle Scholar
[74]J.D. Sluyter, C.A. Camargo, D. Waayer, C.M.M. Lawes, L. Toop, K.T. Khaw, R. Scragg Effect of monthly, high-dose, long-term vitamin D on lung function: a randomized controlled trial Nutrients, 9 (2017), 10.3390/nu9121353Google Scholar
[75]R. Bouillon Vitamin D status in Africa is worse than in other continents Lancet Glob. Heal., 8 (2020), pp. e20-e21, 10.1016/S2214-109X(19)30492-9ArticleDownload PDFView Record in ScopusGoogle Scholar
[76]R.C.A. Dancer, D. Parekh, S. Lax, V. D’Souza, S. Zheng, C.R. Bassford, D. Park, D.G. Bartis, R. Mahida, A.M. Turner, E. Sapey, W. Wei, B. Naidu, P.M. Stewart, W.D. Fraser, K.B. Christopher, M.S. Cooper, F. Gao, D.M. Sansom, A.R. Martineau, G.D. Perkins, D.R. Thickett Vitamin D deficiency contributes directly to the acute respiratory distress syndrome (ARDS)Thorax, 70 (2015), pp. 617-624, 10.1136/thoraxjnl-2014-206680CrossRefView Record in ScopusGoogle Scholar
[77]D.R. Thickett, T. Moromizato, A.A. Litonjua, K. Amrein, S.A. Quraishi, K.A. Lee-Sarwar, K.M. Mogensen, S.W. Purtle, F.K. Gibbons, C.A. Camargo, E. Giovannucci, K.B. Christopher Association between prehospital vitamin D status and incident acute respiratory failure in critically ill patients: a retrospective cohort study BMJ Open Respir. Res., 2 (2015), pp. 1-8, 10.1136/bmjresp-2014-000074View Record in ScopusGoogle Scholar
[78]S. Park, M.G. Lee, S.B. Hong, C.M. Lim, Y. Koh, J.W. Huh Effect of vitamin D deficiency in korean patients with acute respiratory distress syndrome Korean J. Intern. Med., 33 (2018), pp. 1129-1136, 10.3904/kjim.2017.380CrossRefView Record in ScopusGoogle Scholar
[79]http://www.chictr.org.cn/showprojen.aspx?proj=52006, Impact of vitamin D deficiency on prognosis of patients with novel coronavirus pneumonia (COVID-19), (2018) 3–4. http://www.chictr.org.cn/showprojen.aspx?proj=49302 (accessed May 2, 2020).Google Scholar
[80]http://www.chictr.org.cn/showprojen.aspx?proj=52006, The relationship between Vitamin D andnovel coronavirus pneumonia (COVID-19), (2018) 3–4. http://www.chictr.org.cn/showprojen.aspx?proj=51390 (accessed May 2, 2020).Google Scholar
[81]G. Martucci, D. McNally, D. Parekh, P. Zajic, F. Tuzzolino, A. Arcadipane, K.B. Christopher, H. Dobnig, K. Amrein Trying to identify who may benefit most from future vitamin D intervention trials: a post hoc analysis from the VITDAL-ICU study excluding the early deaths Crit. Care, 23 (2019), p. 200, 10.1186/s13054-019-2472-zGoogle Scholar
[82]R. Bouillon, D. Bikle Vitamin d metabolism revised: fall of dogmas J. Bone Miner. Res., 34 (2019), pp. 1985-1992, 10.1002/jbmr.3884CrossRefView Record in ScopusGoogle Scholar
[83]D.A. Jolliffe, C. Stefanidis, Z. Wang, N.Z. Kermani, V. Dimitrov, J.H. White, J.E. McDonough, W. Janssens, P. Pfeffer, C.J. Griffiths, A. Bush, Y. Guo, S. Christenson, I.M. Adcock, K.F. Chung, K.E. Thummel, A.R. Martineau Vitamin d metabolism is dysregulated in asthma and chronic obstructive pulmonary disease Am. J. Respir. Crit. Care Med. (2020), 10.1164/rccm.201909-1867ocGoogle Scholar
[84]J.M. Quesada-Gomez, R. Bouillon Is calcifediol better than cholecalciferol for vitamin D supplementation? Osteoporos. Int., 29 (2018), pp. 1697-1711, 10.1007/s00198-018-4520-yCrossRefView Record in ScopusGoogle Scholar
[85]J. Grein, N. Ohmagari, D. Shin, G. Diaz, E. Asperges, A. Castagna, T. Feldt, G. Green, M.L. Green, F.-X. Lescure, E. Nicastri, R. Oda, K. Yo, E. Quiros-Roldan, A. Studemeister, J. Redinski, S. Ahmed, J. Bernett, D. Chelliah, D. Chen, S. Chihara, S.H. Cohen, J. Cunningham, A. D’Arminio Monforte, S. Ismail, H. Kato, G. Lapadula, E. L’Her, T. Maeno, S. Majumder, M. Massari, M. MoraRillo, Y. Mutoh, D. Nguyen, E. Verweij, A. Zoufaly, A.O. Osinusi, A. DeZure, Y. Zhao, L. Zhong, A. Chokkalingam, E. Elboudwarej, L. Telep, L. Timbs, I. Henne, S. Sellers, H. Cao, S.K. Tan, L. Winterbourne, P. Desai, R. Mera, A. Gaggar, R.P. Myers, D.M. Brainard, R. Childs, T. Flanigan Compassionate use of remdesivir for patients with severe Covid-19 N. Engl. J. Med. (2020), 10.1056/nejmoa2007016Google Scholar