Um estudo piloto avaliando o efeito da administração prolongada de altas doses diárias de vitamina D no curso clínico de vitiligo e psoríase * A pilot study assessing the effect of prolonged administration of high daily doses of vitamin D on the clinical course of vitiligo and psoriasis- PubMed

 

Artigo gratuito do PMC

Resumo

A autoimunidade tem sido associada à deficiência e resistência à vitamina D, com polimorfismos genéticos relacionados ao metabolismo da vitamina D, freqüentemente descritos em pacientes afetados. Altas doses de vitamina D3 podem compensar a resistência herdada aos seus efeitos biológicos. Este estudo teve como ob

“Objetivo

“avaliar a eficácia e segurança do tratamento prolongado com altas doses de vitamina D3 em pacientes com psoríase e vitiligo. Nove pacientes com psoríase e 16 com vitiligo receberam vitamina D3 35.000 UI uma vez ao dia por seis meses em associação com uma dieta com baixo teor de cálcio (evitando laticínios e alimentos enriquecidos com cálcio, como “leite” de aveia, arroz ou soja)) e hidratação (mínimo 2,5 L por dia). Todos os pacientes com psoríase foram pontuados de acordo com o “Índice de área e gravidade da psoríase” (PASI) na linha de base e após o tratamento. A avaliação da resposta clínica de pacientes com vitiligo exigiu uma escala de classificação do quartil. Todos os pacientes apresentaram baixo nível de vitamina D (soro 25 (OH) D3 ≤ 30 ng / mL) no início do estudo. Após o tratamento, os níveis de 25 (OH) D3 aumentaram significativamente (de 14,9 ± 7,4 para 106,3 ± 31,9 ng / mL e de 18,4 ± 8,9 para 132,5 ± 37,0 ng / mL) e os níveis de PTH diminuíram significativamente (de 57,8 ± 16,7 para 28,9 ± 8,2 pg / mL e de 55,3 ± 25,0 a 25,4 ± 10,7 pg / mL) em pacientes com psoríase e vitiligo, respectivamente. As concentrações séricas de PTH e 25 (OH) D3 se correlacionaram inversamente. O escore PASI melhorou significativamente em todos os nove pacientes com psoríase. Quatorze dos 16 pacientes com vitiligo tiveram 25-75% de repigmentação. A uréia sérica, a creatinina e o cálcio (total e ionizado) não se alteraram e a excreção urinária de cálcio aumentou dentro da faixa normal.

(…)

CONTINUA EM:

Fonte: Um estudo piloto avaliando o efeito da administração prolongada de altas doses diárias de vitamina D no curso clínico de vitiligo e psoríase – PubMed

Bibliografia desta publicação:

References

    1. Ramagopalan SV, Heger A, Berlanga AJ, Maugeri NJ, Lincoln MR, Burrell A, et al. A ChIP-seq defined genome-wide map of vitamin D receptor binding: associations with disease and evolution. Genome Res. 2010;20:1352–60. doi: 10.1101/gr.107920.110. – DOI PMC PubMed
    1. Holick MF. The vitamin D deficiency pandemic and consequences for nonskeletal health: mechanisms of action. Mol Aspects Med. 2008;29:361–8. doi: 10.1016/j.mam.2008.08.008. – DOI PMC PubMed
    1. Eyles DW, Smith S, Kinobe R, Hewison M, McGrath JJ. Distribution of the vitamin D receptor and 1 alpha-hydroxylase in human brain. J Chem Neuroanat. 2005;29:21–30. doi: 10.1016/j.jchemneu.2004.08.006. – DOI PubMed
    1. Adams JS, Hewison M. Extrarenal expression of the 25-hydroxyvitamin D-1-hydroxylase. Arch Biochem Biophys. 2012;523:95–102. doi: 10.1016/j.abb.2012.02.016. – DOI PMC PubMed
    1. Eyles DW, Burne TH, McGrath JJ. Vitamin D, effects on brain development, adult brain function and the links between low levels of vitamin D and neuropsychiatric disease. Front Neuroendocrinol. 2013;34:47–64. doi: 10.1016/j.yfrne.2012.07.001. – DOI PubMed
    1. Hewison M. An update on vitamin D and human immunity. Clin Endocrinol (Oxf) 2012;76:315–25. doi: 10.1111/j.1365-2265.2011.04261.x. – DOI PubMed
    1. Holick MF. Evidence-based D-bate on health benefits of vitamin D revisited. Dermatoendocrinol. 2012;4:183–90. doi: 10.4161/derm.20015. – DOI PMC PubMed
    1. IOM (Institute of Medicine). Dietary reference intakes for calcium and vitamin D. Committee to Review Dietary Reference Intakes for Calcium and Vitamin D. Washington, DC: The National Academies Press. 2011.
    1. Heaney RP, Davies KM, Chen TC, Holick MF, Barger-Lux MJ. Human serum 25-hydroxycholecalciferol response to extended oral dosing with cholecalciferol. Am J Clin Nutr. 2003;77:204–10. – PubMed
    1. Lagishetty V, Liu NQ, Hewison M. Vitamin D metabolism and innate immunity. Mol Cell Endocrinol. 2011;347:97–105. doi: 10.1016/j.mce.2011.04.015. – DOI PMC PubMed
    1. Sterling KA, Eftekhari P, Girndt M, Kimmel PL, Raj DS. The immunoregulatory function of vitamin D: implications in chronic kidney disease. Nat Rev Nephrol. 2012;8:403–12. doi: 10.1038/nrneph.2012.93. – DOI PubMed
    1. Patel S, Farragher T, Berry J, Bunn D, Silman A, Symmons D. Association between serum vitamin D metabolite levels and disease activity in patients with early inflammatory polyarthritis. Arthritis Rheum. 2007;56:2143–9. doi: 10.1002/art.22722. – DOI PubMed
    1. Smolders J, Menheere P, Kessels A, Damoiseaux J, Hupperts R. Association of vitamin D metabolite levels with relapse rate and disability in multiple sclerosis. Mult Scler. 2008;14:1220–4. doi: 10.1177/1352458508094399. – DOI PubMed
    1. Amital H, Szekanecz Z, Szücs G, Dankó K, Nagy E, Csépány T, et al. Serum concentrations of 25-OH vitamin D in patients with systemic lupus erythematosus (SLE) are inversely related to disease activity: is it time to routinely supplement patients with SLE with vitamin D? Ann Rheum Dis. 2010;69:1155–7. doi: 10.1136/ard.2009.120329. – DOI PubMed
    1. Haque UJ, Bartlett SJ. Relationships among vitamin D, disease activity, pain and disability in rheumatoid arthritis. Clin Exp Rheumatol. 2010;28:745–7. – PubMed
    1. Mowry EM, Krupp LB, Milazzo M, Chabas D, Strober JB, Belman AL, et al. Vitamin D status is associated with relapse rate in pediatric-onset multiple sclerosis. Ann Neurol. 2010;67:618–24. – PubMed
    1. Ulitsky A, Ananthakrishnan AN, Naik A, Skaros S, Zadvornova Y, Binion DG, et al. Vitamin D deficiency in patients with inflammatory bowel disease: association with disease activity and quality of life. JPEN J Parenter Enteral Nutr. 2011;35:308–16. doi: 10.1177/0148607110381267. – DOI PubMed
    1. Weinstock-Guttman B, Zivadinov R, Qu J, Cookfair D, Duan X, Bang E, et al. Vitamin D metabolites are associated with clinical and MRI outcomes in multiple sclerosis patients. J Neurol Neurosurg Psychiatry. 2011;82:189–95. doi: 10.1136/jnnp.2010.227942. – DOI PubMed
    1. Runia TF, Hop WC, de Rijke YB, Buljevac D, Hintzen RQ. Lower serum vitamin D levels are associated with a higher relapse risk in multiple sclerosis. Neurology. 2012;79:261–6. doi: 10.1212/WNL.0b013e31825fdec7. – DOI PubMed
    1. Correale J, Ysrraelit MC, Gaitán MI. Immunomodulatory effects of Vitamin D in multiple sclerosis. Brain. 2009;132:1146–60. doi: 10.1093/brain/awp033. – DOI PubMed
    1. Bruce D, Yu S, Ooi JH, Cantorna MT. Converging pathways lead to overproduction of IL-17 in the absence of vitamin D signaling. Int Immunol. 2011;23:519–28. doi: 10.1093/intimm/dxr045. – DOI PMC PubMed
    1. Daniel C, Sartory NA, Zahn N, Radeke HH, Stein JM. Immune modulatory treatment of trinitrobenzene sulfonic acid colitis with calcitriol is associated with a change of a T helper (Th) 1/Th17 to a Th2 and regulatory T cell profile. J Pharmacol Exp Ther. 2008;324:23–33. doi: 10.1124/jpet.107.127209. – DOI PubMed
    1. Chang JH, Cha HR, Lee DS, Seo KY, Kweon MN. 1,25-Dihydroxyvitamin D3 inhibits the differentiation and migration of T(H)17 cells to protect against experimental autoimmune encephalomyelitis. PLoS One. 2010;5:e12925. doi: 10.1371/journal.pone.0012925. a. – DOI PMC PubMed
    1. Chang SH, Chung Y, Dong C. Vitamin D suppresses Th17 cytokine production by inducing C/EBP homologous protein (CHOP) expression. J Biol Chem. 2010;285:38751–5. doi: 10.1074/jbc.C110.185777. b. – DOI PMC PubMed
    1. Hegyi Z, Zwicker S, Bureik D, Peric M, Koglin S, Batycka-Baran A, et al. Vitamin D analog calcipotriol suppresses the Th17 cytokine-induced proinflammatory S100 “alarmins” psoriasin (S100A7) and koebnerisin (S100A15) in psoriasis. J Invest Dermatol. 2012;132:1416–24. doi: 10.1038/jid.2011.486. – DOI PubMed
    1. Waite JC, Skokos D. Th17 response and inflammatory autoimmune diseases. Int J Inflam. 2012;2012:819467. doi: 10.1155/2012/819467. – DOI PMC PubMed
    1. Chambers ES, Hawrylowicz CM. The impact of vitamin D on regulatory T cells. Curr Allergy Asthma Rep. 2011;11:29–36. doi: 10.1007/s11882-010-0161-8. – DOI PubMed
    1. Pani MA, Regulla K, Segni M, Krause M, Hofmann S, Hufner M, et al. Vitamin D 1alpha-hydroxylase (CYP1alpha) polymorphism in Graves’ disease, Hashimoto’s thyroiditis and type 1 diabetes mellitus. Eur J Endocrinol. 2002;146:777–81. doi: 10.1530/eje.0.1460777. – DOI PubMed
    1. Sundqvist E, Bäärnhielm M, Alfredsson L, Hillert J, Olsson T, Kockum I. Confirmation of association between multiple sclerosis and CYP27B1. Eur J Hum Genet. 2010;18:1349–52. doi: 10.1038/ejhg.2010.113. – DOI PMC PubMed
    1. Vieth R, Fraser D. Kinetic behavior of 25-hydroxyvitamin D-1-hydroxylase and -24-hydroxylase in rat kidney mitochondria. J Biol Chem. 1979;254:12455–60. – PubMed
    1. Vieth R, McCarten K, Norwich KH. Role of 25-hydroxyvitamin D3 dose in determining rat 1,25-dihydroxyvitamin D3 production. Am J Physiol. 1990;258:E780–9. – PubMed
    1. Rodríguez-Antona C, Donato MT, Pareja E, Gómez-Lechón MJ, Castell JV. Cytochrome P-450 mRNA expression in human liver and its relationship with enzyme activity. Arch Biochem Biophys. 2001;393:308–15. doi: 10.1006/abbi.2001.2499. – DOI PubMed
    1. Nebert DW, Russell DW. Clinical importance of the cytochromes P450. Lancet. 2002;360:1155–62. doi: 10.1016/S0140-6736(02)11203-7. – DOI PubMed
    1. Ingelman-Sundberg M, Sim SC, Gomez A, Rodriguez-Antona C. Influence of cytochrome P450 polymorphisms on drug therapies: pharmacogenetic, pharmacoepigenetic and clinical aspects. Pharmacol Ther. 2007;116:496–526. doi: 10.1016/j.pharmthera.2007.09.004. – DOI PubMed
    1. Zhou SF, Liu JP, Chowbay B. Polymorphism of human cytochrome P450 enzymes and its clinical impact. Drug Metab Rev. 2009;41:89–295. doi: 10.1080/03602530902843483. – DOI PubMed
    1. Vieth R. Toxicity of Vitamin D. In: Holick MF, ed. Vitamin D. New York, NY: Humana Press, 2010:603-612.
    1. Cusano NE, Thys-Jacobs S, Bilezikian JP. Hypercalcemia due to vitamin D toxicity. In: Feldman D, Pike JW, Adams JS, ed. Vitamin D. San Diego, CA: Academic Press, 2011:1381–1402.
    1. Silverberg JI, Silverberg AI, Malka E, Silverberg NB. A pilot study assessing the role of 25 hydroxy vitamin D levels in patients with vitiligo vulgaris. J Am Acad Dermatol. 2010;62:937–41. doi: 10.1016/j.jaad.2009.11.024. – DOI PubMed
    1. Benrashid M, Moyers K, Mohty M, Savani BN. Vitamin D deficiency, autoimmunity, and graft-versus-host-disease risk: Implication for preventive therapy. Exp Hematol. 2012;40:263–7. doi: 10.1016/j.exphem.2012.01.006. – DOI PubMed
    1. Gisondi P, Rossini M, Di Cesare A, Idolazzi L, Farina S, Beltrami G, et al. Vitamin D status in patients with chronic plaque psoriasis. Br J Dermatol. 2012;166:505–10. doi: 10.1111/j.1365-2133.2011.10699.x. – DOI PubMed
    1. Orgaz-Molina J, Buendía-Eisman A, Arrabal-Polo MA, Ruiz JC, Arias-Santiago S. Deficiency of serum concentration of 25-hydroxyvitamin D in psoriatic patients: a case-control study. J Am Acad Dermatol. 2012;67:931–8. doi: 10.1016/j.jaad.2012.01.040. – DOI PubMed
    1. Byers SW, Rowlands T, Beildeck M, Bong YS. Mechanism of action of vitamin D and the vitamin D receptor in colorectal cancer prevention and treatment. Rev Endocr Metab Disord. 2012;13:31–8. doi: 10.1007/s11154-011-9196-y. – DOI PMC PubMed
    1. Muscogiuri G, Sorice GP, Ajjan R, Mezza T, Pilz S, Prioletta A, et al. Can vitamin D deficiency cause diabetes and cardiovascular diseases? Present evidence and future perspectives. Nutr Metab Cardiovasc Dis. 2012;22:81–7. doi: 10.1016/j.numecd.2011.11.001. – DOI PubMed
    1. Rothman KJ, Michels KB. The continuing unethical use of placebo controls. N Engl J Med. 1994;331:394–8. doi: 10.1056/NEJM199408113310611. – DOI PubMed
    1. Kavanaugh A. Ethical and practical issues in conducting clinical trials in psoriasis and psoriatic arthritis. Ann Rheum Dis. 2005;64(Suppl 2):ii46–8. doi: 10.1136/ard.2004.030817. – DOI PMC PubMed
    1. Resnik DB. Ethical dilemmas in communicating medical information to the public. Health Policy. 2001;55:129–49. doi: 10.1016/S0168-8510(00)00121-4. – DOI PubMed
    1. Simon R. Are placebo-controlled clinical trials ethical or needed when alternative treatment exists? Ann Intern Med. 2000;133:474–5. doi: 10.7326/0003-4819-133-6-200009190-00017. – DOI PubMed
    1. Zhang F, Moayyeri A, Spector TD. Genetic influences on circulating vitamin D level: a review. Curr Cardiovasc Risk Rep. 2012;6:549–55. doi: 10.1007/s12170-012-0278-5. – DOI
    1. Jones G. Pharmacokinetics of vitamin D toxicity. Am J Clin Nutr. 2008;88:582S–6S. – PubMed
    1. Hewison M. Vitamin D and immune function: an overview. Proc Nutr Soc. 2012;71:50–61. doi: 10.1017/S0029665111001650. – DOI PubMed
    1. Henry HL. Regulation of vitamin D metabolism. Best Pract Res Clin Endocrinol Metab. 2011;25:531–41. doi: 10.1016/j.beem.2011.05.003. – DOI PubMed
    1. Bikle DD. Vitamin D and immune function: understanding common pathways. Curr Osteoporos Rep. 2009;7:58–63. doi: 10.1007/s11914-009-0011-6. – DOI PubMed
    1. Beckman MJ, Horst RL, Reinhardt TA, Beitz DC. Up-regulation of the intestinal 1,25-dihydroxyvitamin D receptor during hypervitaminosis D: a comparison between vitamin D2 and vitamin D3. Biochem Biophys Res Commun. 1990;169:910–5. doi: 10.1016/0006-291X(90)91979-3. – DOI PubMed
    1. Buckle RM, Gamlen TR, Pullen IM. Vitamin D intoxication treated with porcine calcitonin. Br Med J. 1972;3:205–7. doi: 10.1136/bmj.3.5820.205. – DOI PMC PubMed
    1. Selby PL, Davies M, Marks JS, Mawer EB. Vitamin D intoxication causes hypercalcaemia by increased bone resorption which responds to pamidronate. Clin Endocrinol (Oxf) 1995;43:531–6. doi: 10.1111/j.1365-2265.1995.tb02916.x. – DOI PubMed
    1. Cannell JJ, Hollis BW. Use of vitamin D in clinical practice. Altern Med Rev. 2008;13:6–20. – PubMed
    1. Tsai KS, Wahner HW, Offord KP, Melton LJ, 3rd, Kumar R, Riggs BL. Effect of aging on vitamin D stores and bone density in women. Calcif Tissue Int. 1987;40:241–3. doi: 10.1007/BF02555255. – DOI PubMed
    1. Hariri A, Mount DB, Rastegar A. Disorders of calcium, phosphate, and magnesium metabolism. In: Mount DB, Sayegh MH, Singh AK, ed. Core Concepts in the Disorders of Fluid, Electrolytes and Acid-Base Balance. New York, NY: Springer US, 2013:103-146.
    1. Duhra P, Foulds IS. Persistent vitiligo induced by diphencyprone. Br J Dermatol. 1990;123:415–6. doi: 10.1111/j.1365-2133.1990.tb06306.x. – DOI PubMed
    1. Basavaraj KH, Ashok NM, Rashmi R, Praveen TK. The role of drugs in the induction and/or exacerbation of psoriasis. Int J Dermatol. 2010;49:1351–61. doi: 10.1111/j.1365-4632.2010.04570.x. – DOI PubMed
    1. Fredriksson T, Pettersson U. Severe psoriasis–oral therapy with a new retinoid. Dermatologica. 1978;157:238–44. doi: 10.1159/000250839. – DOI PubMed
    1. Shin J, Lee JS, Hann SK, Oh SH. Combination treatment by 10 600 nm ablative fractional carbon dioxide laser and narrowband ultraviolet B in refractory nonsegmental vitiligo: a prospective, randomized half-body comparative study. Br J Dermatol. 2012;166:658–61. doi: 10.1111/j.1365-2133.2011.10723.x. – DOI PubMed